Kurchatov-type methods for non-differentiable Hammerstein-type integral equations
نویسندگان
چکیده
Abstract We consider a generic type of nonlinear Hammerstein-type integral equations with the particularity having non-differentiable kernel Nemystkii type. So, in order to solve it we uniparametric family iterative processes derivative free, main advantage that for special value involved parameter method obtained coincides Newton’s method, is due fact evaluating divided difference operator when two values are same. perform qualitative convergence study by choosing an auxiliary point, allow us obtain existence and separation solutions given equation, is, local semilocal balls can be obtained.
منابع مشابه
ANALYTICAL-NUMERICAL SOLUTION FOR NONLINEAR INTEGRAL EQUATIONS OF HAMMERSTEIN TYPE
Using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of Hammerstein type . The mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). The procedure of this method is so fast and don't need high cpu and complicated programming. The advantages of this method are that we can applied for those integral equations whi...
متن کاملanalytical-numerical solution for nonlinear integral equations of hammerstein type
using the mean-value theorem for integrals we tried to solved the nonlinear integral equations of hammerstein type . the mean approach is to obtain an initial guess with unknown coefficients for unknown function y(x). the procedure of this method is so fast and don't need high cpu and complicated programming. the advantages of this method are that we can applied for those integral equation...
متن کاملExistence of an $L^p$-solution for two dimensional integral equations of the Hammerstein type
In this paper, existence of an $L^p$-solution for 2DIEs (Two Dimensional Integral Equations) of the Hammerstein type is discussed. The main tools in this discussion are Schaefer's and Schauder's fixed point theorems with a general version of Gronwall's inequality.
متن کاملA New Collocation - Type Method for Hammerstein Integral Equations
We consider Hammerstein equations of the form y(i)=f(t)+(hk(t,s)g(s,y(s))ds, te[a,b], J a and present a new method for solving them numerically. The method is a collocation method applied not to the equation in its original form, but rather to an equivalent equation for z(t):= g(t,y(t)). The desired approximation to y is then obtained by use of the (exact) equation y(t)=f(t) + fh k(t,s)z(s)ds, ...
متن کاملA new iteration method for solving a class of Hammerstein type integral equations system
In this work, a new iterative method is proposed for obtaining the approximate solution of a class of Hammerstein type Integral Equations System. The main structure of this method is based on the Richardson iterative method for solving an algebraic linear system of equations. Some conditions for existence and unique solution of this type equations are imposed. Convergence analysis and error bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2022
ISSN: ['1017-1398', '1572-9265']
DOI: https://doi.org/10.1007/s11075-022-01406-8